Climate CHIP Publications

Energy and human health

Authors: 
Kirk R. Smith, Howard Frumkin, Kalpana Balakrishnan, Colin D. Butler, Zoë A. Chafe, Ian Fairlie, Patrick Kinney, Tord Kjellstrom, Denise L. Mauzerall, Thomas E. McKone, Anthony J. McMichael, Mycle Schneider
Year: 
2013

Energy use is central to human society and provides many health benefits. But each source of energy entails some health risks. This article reviews the health impacts of each major source of energy, focusing on those with major implications for the burden of disease globally. The biggest health impacts accrue to the harvesting and burning of solid fuels, coal and biomass, mainly in the form of occupational health risks and household and general ambient air pollution. Lack of access to clean fuels and electricity in the world's poor households is a particularly serious risk for health.

Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment

Authors: 
Lemke B, Kjellstrom T
Year: 
2012

The WBGT heat stress index has been well tested under a variety of climatic conditions and quantitative links have been established between WBGT and the work-rest cycles needed to prevent heat stress effects at the workplace. While there are more specific methods based on indi-vidual physiological measurements to determine heat strain in an individual worker, the WBGT index is used in international and national standards to specify workplace heat stress risks.

Calculating workplace WBGT from meteorological data

Authors: 
Lemke B, Kjellstrom T
Year: 
2012

The WBGT heat stress index has been well tested under a variety of climatic conditions and quantitative links have been established between WBGT and the work-rest cycles needed to prevent heat stress effects at the workplace. While there are more specific methods based on individual physiological measurements to determine heat strain in an individual worker, the WBGT index is used in international and national standards to specify workplace heat stress risks.

Socio-cultural reflections on heat in Australia with implications for health and climate change adaptation

Authors: 
Banwell C, Dixon J, Bambrick H. Edwards F, Kjellstrom T
Year: 
2012

Background : Australia has a hot climate with maximum summer temperatures in its major cities frequently exceeding 35°C. Although ‘heat waves’ are an annual occurrence, the associated heat-related deaths among vulnerable groups, such as older people, suggest that Australians could be better prepared to deal with extreme heat. Objective : To understand ways in which a vulnerable sub-population adapt their personal behaviour to cope with heat within the context of Australians’ relationship with heat.

Association Between Occupational Heat Stress and Kidney Disease Among 37 816 Workers in the Thai Cohort Study

Authors: 
Tawatsupa B, Lim LL-Y, Kjellstrom T, Seubsman S, Sleigh A & the Thai Cohort Study team
Year: 
2012

Background: We examined the relationship between self-reported occupational heat stress and incidence of self-reported doctor-diagnosed kidney disease in Thai workers.

Urban Health Inequities and the added pressure of Climate Change: An Action-Oriented Research Agenda

Authors: 
Friel S, Hancock T, Kjellstrom T, McGranahan G, Monge P, Roy Y
Year: 
2011

Climate change will likely exacerbate already existing urban social inequities and health risks, thereby exacerbating existing urban health inequities. Cities in low- and middle-income countries are particularly vulnerable. Urbanization is both a cause of and potential solution to global climate change. Most population growth in the foreseeable future will occur in urban areas primarily in developing countries.

Climate change and rising heat: population health implications for working people in Australia

Authors: 
Hanna EG, Kjellstrom T, Bennett C, Dear K.
Year: 
2011

The rapid rise in extreme heat events in Australia recently is already taking a health toll. Climate change scenarios predict increases in the frequency and intensity of extreme heat events in the future, and population health may be significantly compromised for people who cannot reduce their heat exposure. Exposure to extreme heat presents a health hazard to all who are physically active, particularly outdoor workers and indoor workers with minimal access to cooling systems while working.